


Datum: Erarbeitet im Mathematik - LK 11 des MCG, in 2 Blöcken am 2./3. April 2020, in 150 Min.

Autoren: Paul A., Oscar B., Benjamin-Justin B., Ian B., Lena C., Alexander D., Laura D., Benjamin D., Danilo G., Nele G., Vivien M.-H., Jakob H., Ricardo K., Rayko K., Moses M., Sebastian M., Marco R., Julien Luca S., Marc S., Margarete W., Nikolas Z.

Eine große Teamleistung: Dieses Dokument wurde in der Unterrichtszeit von den 20 Schülerinnen und Schüler parallel bearbeitet (das funktioniert tatsächlich).

**Daten:** 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by **Johns Hopkins CSSE** https://github.com/CSSEGISandData/COVID-19/blob/master/csse\_covid\_19\_data/csse\_covid\_19\_time\_series/time\_series\_covid19\_confirmed\_global.csv

#### <u>Idealisierungsannahmen</u>

- wir können nur mit der gemeldeten Anzahl der Infizierten arbeiten; hierbei fehlen unentdeckte Infizierte, z.B. durch leichte symptomfreie Verläufe (die man erst im Nachhinein auf Antikörperbildung positiv testen könnte)
- oder durch fehlende bzw. bisher nicht durchgeführte Tests.

#### **Modellannahmen**

- unbegrenztes exponentielles Wachstum auf Grundlage von zwei Messpunkten
- **begrenztes exponentielles Wachstum** auf Grundlage von **zwei Messpunkten** und einer Zielannahme von Maximalinfizierten (z.B. 75 % der Bevölkerung, vgl. Herdenimmunität) sowie eines Zeitpunktes für diese Maximalinfektion.

#### Modelle für unbegrenztes exponentielles Wachstum

 $f(t) = c \cdot a^t = Startwert \cdot Wachstumskonstante^t$ 

#### Modell 1 (Tag 0 und Tag 8)

Wir nehmen die Datenpunkte vom Tag des Ausbruches, einer Woche und ein Tag später als Datengrundlage und modellieren unter der Annahme des unbegrenzten, exponentiellen Wachstums wie folgt:

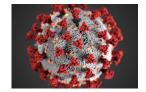
$$f(t) = c \cdot a^{t}$$

$$f(0) = 1 \text{ und } f(8) = 12$$

$$1 = c \cdot a^{0} = c \cdot 1 = c$$

$$12 = c \cdot a^{8} = a^{8}$$

$$a = \pm \sqrt[8]{12} \approx \pm 1,364$$


$$c = 1$$

$$a = 1,364(261602)$$

$$f(t) = 1 \cdot 1,364^{t}$$

Diese Exponentialfunktion kann umgewandelt werden in die eulersche Form.

k = ln(1,364) = 0,310422,  $f(t) = 1 \cdot e^{0,310422t} = e^{0,310422t}$ 



#### **Bewertung des Modells**

Es ist nicht akkurat, da natürlich noch andere Faktoren und Einflüsse, wie die Maßnahmen der Regierung(z.B. das Kontaktverbot), dazugekommen sind. Zudem weicht es in der Länge von den Infektionszahlen der JHU ab. Die Wachstumsrate hat sich so gut wie jeden Tag ein bisschen verändert und kann nicht über diese Funktion dargestellt werden.

#### Modell 2 (Tag 0 und Tag 14)

Wir nehmen die Datenpunkte vom Tag des Ausbruches und zwei Wochen später als Datengrundlage und modellieren unter der Annahme des unbegrenzten, exponentiellen Wachstums wie folgt:

$$f(t) = c \cdot a^{t}$$

$$f(0) = 1 \text{ und } f(14) = 14$$

$$1 = c \cdot a^{0} = c \cdot 1 = c$$

$$14 = c \cdot a^{14} = a^{14}$$

$$a = \sqrt[14]{14} \approx 1,207$$

$$f(t) = 1 \cdot 1,207^{t}$$

$$c = 1$$

$$a = 1,207(442027)$$

Diese Exponentialfunktion kann umgewandelt werden in die eulersche Form.

$$k = ln(1,207) = 0,188504095$$
  
 $f(t) = 1 \cdot e^{0,188504095t} = e^{0,188504095t}$ 

#### **Bewertung des Modells**

Das Modell kommt den tatsächlichen Zahlen schon sehr nahe, jedoch liegen die Zahlen des Modells noch etwas über den Zahlen der Realität. Das liegt unter anderem an den Verschärfungen der Maßnahmen durch die Regierung (Minimierung sozialer Kontakte, Versammlungsverbot, ...) und dem Einhalten dieser Maßnahmen durch die Bevölkerung, da erst durch die chaotische Situation in anderen Ländern (zb. Italien), vielen Leuten der Ernst der Lage bewusst wurde, was in diesem Modell noch nicht miteinbezogen wurde. Das Modell wird in den folgenden Tagen immer stärker von den realen Zahlen abweichen, da die staatlichen Maßnahmen weiter verschärft wurden (Strafenkatalog, Schließung verschiedener Wirtschaftsbereiche wie zb. Gastronomie, Tourismus und Mode, ...) und das Modell diese nicht beinhaltet. Das Modell zeigt somit einen Verlauf der Covid-19-Erkrankung, ohne große staatliche Maßnahmen gegen das Virus, was jedoch nicht der Realität entspricht. Aufgrund dessen ist das Modell eher nicht zur Darstellung der Corona-Erkrankung (höchstens zu Beginn) geeignet.

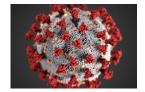
#### Modell 3 (Tag 0 und Tag 65)

Wir nehmen die Datenpunkte vom Tag des Ausbruches und Tag 65 als Datengrundlage und modellieren unter der Annahme des unbegrenzten, exponentiellen Wachstums wie folgt:

$$f(t) = c \cdot a^{t}$$

$$f(0) = 1 \text{ und } f(65) = 77.872$$

$$1 = c \cdot a^{0} = c \cdot 1 = c$$


$$77.872 = c \cdot a^{65} = a^{65}$$

$$a = \sqrt[65]{77872} \approx 1,189192114$$

$$c = 1$$

$$a = 1,189192114$$

$$f(t) = 1 \cdot 1,19^{t}$$



Diese Exponentialfunktion kann umgewandelt werden in die eulersche Form.

$$k = ln(1,18912114) = 0,1732$$
  
 $f(t) = 1 \cdot e^{0,1732t} = e^{0,1732t}$ 

#### **Bewertung des Modells**

Das Modell kann man noch nicht beurteilen, da wir noch keine Werte für die Zukunft haben. Bis zum heutigen Zeitpunkt (02.04.) stimmen die Daten sehr gut. Die Maßnahme der Kontaktsperre ist in diesem Modell noch nicht erkennbar.

Die Maßnahmen wurden zwar grundsätzlich beachtet, aber man sieht nicht, ab welchem Punkt diese wirken, da es eine Gesamtübersicht ist und man nur einen Gesamtüberblick erhält. Dadurch sind mögliche Maßnahmen zwar beachtet, man kann aber nicht deren Wirksamkeit erkennen, es sei denn man hat einen direkten Vergleich zur originalen Kurve.

#### Wirksamkeit von Maßnahmen:

- 10.03. Absage aller öffentlichen und privaten Großveranstaltungen mit mehr als 1000 erwarteten Teilnehmern.
- 18.03. MCG Home / bundesweite Schulschließung, Ansprache von der Bundeskanzlerin
- 22.03. Beginn der Kontaktsperre

Nach 10 Tagen (bestehend aus einer Inkubationszeit von 6 Tagen, einer Testzeit von 3 Tagen und einer Übermittlungszeit von einem Tag), also frühestens am 1. April 2020 die ersten Werte zu den Auswirkungen der Kontaktsperre aufgezeichnet werden. Deswegen kann erst im Laufe der nächsten Tage gesagt werden, welchen Einfluss diese Sperre auf die Ausbreitung von Covid-19 haben wird. Die Maßnahmen dienen zur Eindämmung der Ausbreitung des Virus. Sofern die Maßnahmen ihr gewünschtes Ziel erreichen, kann man das an einem geringeren Wachstum erkennen.

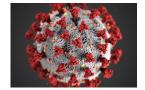
#### Modell 4 (Tag 61 und Tag 65)

Ausgehend von dem Beschluss der Maßnahmen, nutzen wir, unter Beachtung der Zeit, ab wann die Maßnahmen in den Infektionszahlen ersichtlich werden, die Datenpunkte 28.03. und 01.04 als Modellannahme. An diesen Tagen zeigen die Maßnahmen vom 10.03. und 18.03. (z.B. bundesweite Schulschließung) vermutlich erste sichtbare Effekte in den Daten. Zudem nehmen wir weiterhin ein unbegrenztes, exponentielles Wachstum an.

$$f(t) = c \cdot a^{t}$$

$$f(61) = 57695 \quad \text{und} \ f(65) = 77.872$$

$$57695 = c \cdot a^{61} \quad | : a^{61} \quad \text{c} = 595,56629779$$


$$77.872 = c \cdot a^{65} \quad | : a^{65} \quad \text{a} = 1,07785611$$

$$VII_{a} \quad \frac{57695}{a^{61}} = c$$

$$VIII_{a} \quad \frac{77.872}{a^{65}} = \frac{57695}{a^{61}} \quad | \cdot a^{65} \quad \text{VIV}_{a} \quad 77.872 = 57.695 \cdot a^{4} \quad | \div 57.695$$

$$VIV_{b} \quad 1,3497 = a^{4} \quad | \sqrt[4]{()}$$

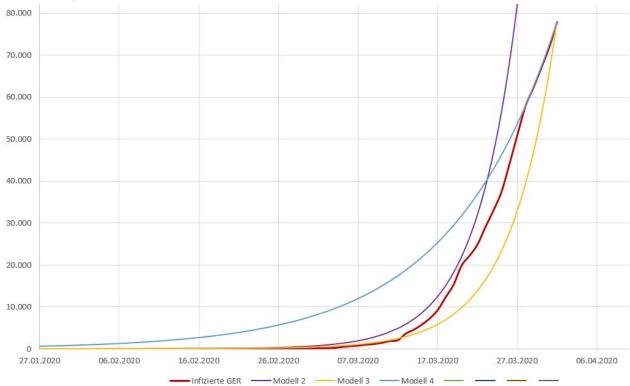
$$a = \pm \sqrt{1,3497}$$



$$a = 1,078$$

$$a \text{ in VII} \quad 57.695 = c \cdot 1,078^{61} \qquad | : 1,078^{61}$$

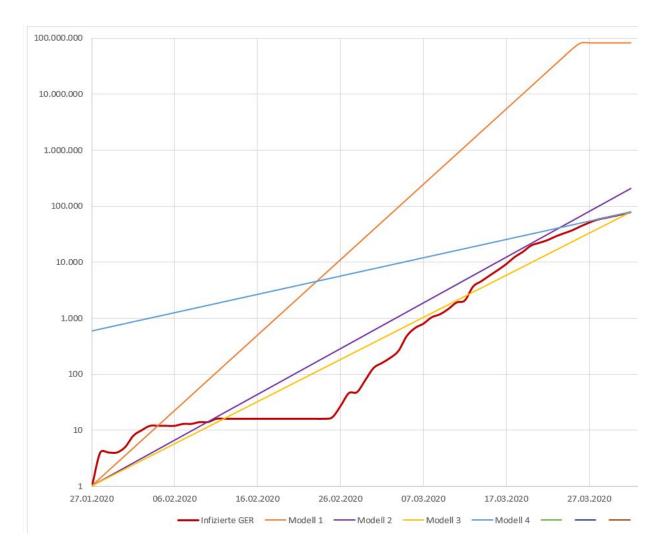
$$c = 595,56629779$$


$$f(t) = 595,566 \cdot 1,078^{t}$$

Diese Exponentialfunktion kann umgewandelt werden in die eulersche Form.

$$k = \ln(1,07785611) = 0,074973985$$
$$f(t) = 595,56629779 \cdot e^{0,074973985 t}$$

#### Modelle 2-4 im Vergleich


Der rote Graph stellt die Daten der Infiziertenzahlen nach JHU dar.

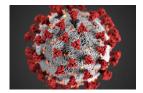


Letztlich benutzt man zur Modellierung der Infektionsanzahl in den jeweiligen Zeiträumen jeweils verschiedene Exponentialfunktionen.




#### Ansicht der Modelle in logarithmischer Skalierung






#### Zukunftsprognose der Modelle 1 - 4

Bei weiter fortgeführten unbegrenzten, exponentiellem Wachstum anhand der Messdaten ergeben sich folgende Prognosen.



In Modell 4 kann man erkennen: Würde das unbegrenzte, exponentielle Wachstum so fortgeführt werden, wie zwischen dem 28.03. und 01.04., so würde am 03.07. die gesamte Bevölkerung infiziert sein.



#### Modell 5: BEW

#### Modelle für begrenztes exponentielles Wachstum

$$f(t) = f(t) = Max - b \cdot e^{kt}$$

Wir nehmen die Datenpunkte vom Tag des Ausbruches und Tag 66, sowie eine maximale Infiziertenquote von 75 % der Gesamtbevölkerung an. Diese Daten modellieren wir unter der Annahme des begrenzten, exponentiellen Wachstums:

$$f(t) = Max - b \cdot e^{kt}$$

$$f(0) = 1$$
,  $f(66) = 84.794$  und  $max = 62.265.000$  Menschen

$$f(0) = 1 = Max - b \cdot e^{0k} = 62265000 - b \cdot 1$$

$$1 = 62.265.000 - b$$

|+b|

$$1 + b = 62.265.000$$

|-1|

$$b = 62.264.999$$

02.204.7

$$f(66) = 62.265.000 - 62.264.999 \cdot e^{66k} = 84.794$$

|-84.794

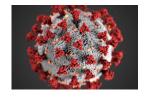
$$62.180.206 - 62.264.999 \cdot e^{66k} = 0$$

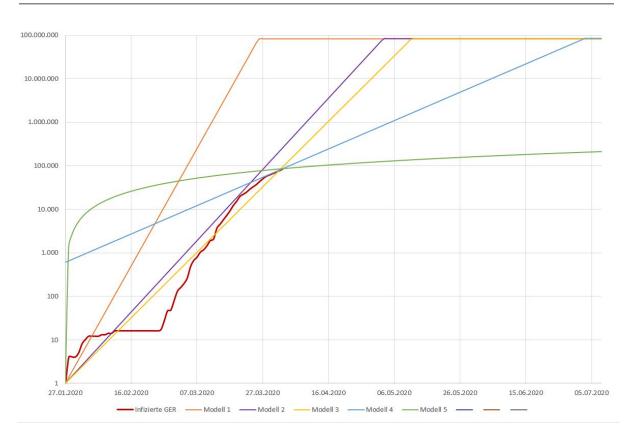
 $|+62.264.999 \cdot e^{66k}$ 

$$62.180.206 = 62.264.999 \cdot e^{66k}$$

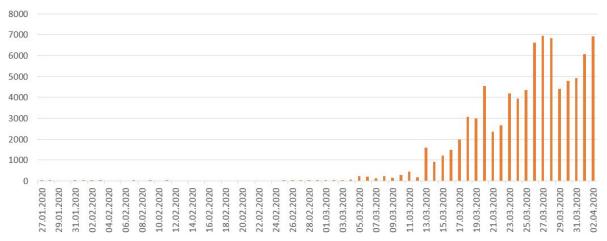
1: 62.264.999

$$e^{66k} = 0,998638192$$


| ln( )


66k = -0.001362736

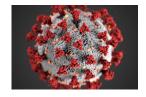
1:66


k = -0,000020648

$$f(t) = 62.265.000 - 62.264.999 \cdot e^{-0.000020648t}$$






#### **Modell 7: Absoluter täglicher Anstieg**



Seit dem 26.02. steigen die absoluten täglichen Anstiege nahezu kontinuierlich. Das entspricht dem exponentiellen Wachstum, welches wir bei Erkrankungen wie Covid-19 verzeichnen. Ausnahmen finden sich am 12.03. und 21.03, was daran liegen könnte, dass dort nicht so viele Neuerkrankungen erkannt wurden.

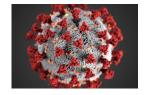
Am 05.03. ist der absolute Anstieg erstmals bedeutend größer. Dies ist auf die Infektionswelle durch Veranstaltungen und Reisende zurückzuführen. Vom 11.03 auf den 13.03 verdreifacht sich dieser Anstieg sogar.

Am 21.03. sind ca. 2400 neue Infizierte zu den vorigen Infizierten dazu gekommen. Die Anzahl der Infizierten hat sich so zum Vortag fast halbiert. Ein Tag danach, also der 22.03., hat Deutschland 2700



neue Infizierte. So hat sich die Anzahl nicht drastisch erhöht. Jedoch liegt nur ein Tag später die Anzahl der neu Infizierten für drei Tage, bis zum 25.03. bei jeweils rund 4000 Infizierten. Noch einen Tag später, ist die Anzahl wieder sehr stark gestiegen und hat sich wieder für drei Tage, also bis zum 28.03. jeweils um ca. 6800 Infizierten an COVID-19 erhöht. Danach, am 29.03. Sinkt die Anzahl der Infizierten wieder, so dass es "nur" 4500 neu Infizierte gibt. Diese Abnahme kann auf die Kontaktsperre vom 22.03. zurückgeführt werden. jedoch ist dann verwunderlich, warum die Anzahl dann in den folgenden Tagen wieder stark steigt und heute, dem 02.04. wieder bei knapp 7000 neu Infizierten liegen, so wie am 27.03.. Die einzigste Erklärung dafür könnte sein, dass die Anzahl der Tests auf COVID-19 erhöht ist und das sich immer mehr Menschen testen lassen.

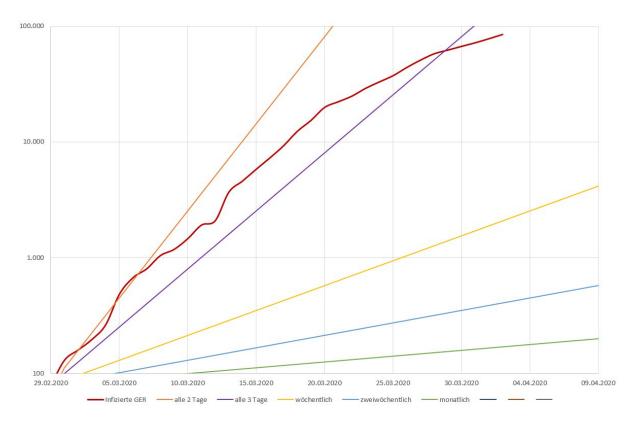
| Anzahl der Intensivbetten in Deutschland                                 | Statistisches Bundesamt (2018):<br>Grunddaten der Krankenhäuser,<br>2017. Fachserie 12 Reihe 6.1.1 | 28.031<br>(33,7 ITS-Betten pro 100.000 EW) |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|
| Durch Nicht-Corona-Patienten belegt                                      | https://bit.ly/2JxcVqu<br>(Stand: 30.03.2020, 18:07 Uhr)                                           | 6.485                                      |
| Länge, die ein Corona-Patient auf<br>Intensivstation liegen muss         | https://bit.ly/2UWxdip<br>(Stand: 24.03.2020)                                                      | über 7 Tage                                |
| Anzahl (in Prozent) der Infizierten, die auf eine Intensivstation müssen | https://bit.ly/2JxcVqu<br>(Stand: 30.03.2020, 18:07 Uhr)                                           | ca. 2 %                                    |


Tabelle: Verschiedene Fakten zu Intensivbetten und Corona-Patienten

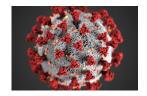
#### 

- Risikopatienten (mit Vorerkrankungen und Corona)
- Menschen, mit künstlich erzeugten Lebensvorgängen (Beatmung)
- kritische Corona-Fälle, bei denen eine Chance auf Genesung in Aussicht ist
- Ab einem bestimmten Alter, wird der Person kein Bett freigestellt (ab ca. 85 Jahren)

Mehr zum Thema:


**ZEIT Artikel** 




#### Entwicklung der Infiziertenzahlen

Bei einer logarithmischen Skala sieht die Steigung linear aus und zeigt aber ein exponentielles Wachstum. Aus einer logarithmischen Skala kann man besser ein exponentielles Wachstum erfassen, als aus einer normalen Skala. Dafür kann man bei einer logarithmischen Skala aber schwerer einzelne Werte ablesen.

Der orangefarbene Graph der Funktion startet am 01.03. mit dem Wert 100. Anschließend steigt er in den folgenden Tagen linear an. Da sich die Werte alle drei Tage verdoppeln, liegt zudem exponentielles Wachstum vor. Am 20.03. erreicht der Graph den Wert 100.000. Das bedeutet, dass 0,125 % der deutschen Bevölkerung mit dem Virus infiziert sind. Im Vergleich liegt der orangene Graph deutlich über den anderen Graphen, da er am stärksten ansteigt (an einigen Stellen zu Beginn steigt der rote Graph etwas stärker an, jedoch nicht über einen längeren Zeitraum) und somit am schnellsten die 100.000 Infizierten erreicht (nach 20 Tagen).

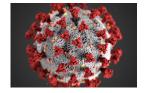


Zum Beispiel arbeitet ZEIT ONLINE (Stand: 02.04.2020) mit einer ähnlichen Darstellung



| Infizierte                            | Wachstumsfunktion              |  |  |
|---------------------------------------|--------------------------------|--|--|
| verdoppeln sich täglich               | $f(t) = 79 \cdot 2^t$          |  |  |
| verdoppeln sich alle 2 Tage           | f(t) =79 · 1,4142 <sup>t</sup> |  |  |
| verdoppeln sich alle 3 Tage           | f(t) =79 · 1,2599 <sup>t</sup> |  |  |
| verdoppeln sich jede Woche            | f(t) =79 · 1,1041 <sup>t</sup> |  |  |
| verdoppeln sich alle 2 Wochen         | f(t) =79 · 1,0508 <sup>t</sup> |  |  |
| verdoppeln sich jeden Monat (30 Tage) | f(t) =79 · 1,0234 <sup>t</sup> |  |  |

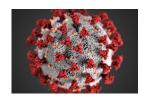
#### Beispiel für die Berechnung für: verdoppelt sich jede Woche


$$f(1) = 1$$
,  $f(7) = 2$ 

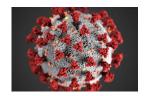
$$f(t) = a^t \quad | \ t = 7 \quad \longrightarrow \quad 2 = a^7 \quad | \sqrt[7]{(\ )} \quad \longrightarrow \quad 2 = a^7 \quad | \sqrt[7]{(\ )} \quad \longrightarrow \quad a = \sqrt[3]{2} \quad \longrightarrow \quad a = 1,104$$

#### <u>Video</u>

Mehr Informationen in diesem fancytastischen Video:


Corona geht gerade erst los




**Anlage - Berechnete Daten:** 

Hinweis: Alle Werte über 83.020.000 wurden bei unb. exp. Wachstum abgeschnitten.

| Datum       | Tag | Datum                 | Infizierte GER      | Modell 1           | Modell 2            | Modell 3            | Modell 4             | Modell 5 |
|-------------|-----|-----------------------|---------------------|--------------------|---------------------|---------------------|----------------------|----------|
| LIVE-Stand* |     | Veröffentlich-<br>ung | Quelle: JHU<br>CSSE | Tag 0 und<br>Tag 8 | Tag 0 und<br>Tag 14 | Tag 0 und<br>Tag 65 | Tag 61 und<br>Tag 65 | BEW      |
| 17.01.2020  | 0   | 27.01.2020            | 1                   | 1                  | 1                   | 1                   | 596                  | 1        |
| 18.01.2020  | 1   | 28.01.2020            | 4                   | 1                  | 1                   | 1                   | 642                  | 1.287    |
| 19.01.2020  | 2   | 29.01.2020            | 4                   | 2                  | 1                   | 1                   | 692                  | 2.572    |
| 20.01.2020  | 3   | 30.01.2020            | 4                   | 3                  | 2                   | 2                   | 746                  | 3.858    |
| 21.01.2020  | 4   | 31.01.2020            | 5                   | 3                  | 2                   | 2                   | 804                  | 5.143    |
| 22.01.2020  | 5   | 01.02.2020            | 8                   | 5                  | 3                   | 2                   | 866                  | 6.429    |
| 23.01.2020  | 6   | 02.02.2020            | 10                  | 6                  | 3                   | 3                   | 934                  | 7.714    |
| 24.01.2020  | 7   | 03.02.2020            | 12                  | 9                  | 4                   | 3                   | 1.007                | 9.000    |
| 25.01.2020  | 8   | 04.02.2020            | 12                  | 12                 | 5                   | 4                   | 1.085                | 10.285   |
| 26.01.2020  | 9   | 05.02.2020            | 12                  | 16                 | 5                   | 5                   | 1.169                | 11.571   |
| 27.01.2020  | 10  | 06.02.2020            | 12                  | 22                 | 7                   | 6                   | 1.260                | 12.856   |
| 28.01.2020  | 11  | 07.02.2020            | 13                  | 30                 | 8                   | 7                   | 1.359                | 14.142   |
| 29.01.2020  | 12  | 08.02.2020            | 13                  | 41                 | 10                  | 8                   | 1.464                | 15.427   |
| 30.01.2020  | 13  | 09.02.2020            | 14                  | 57                 | 12                  | 10                  | 1.578                | 16.712   |
| 31.01.2020  | 14  | 10.02.2020            | 14                  | 77                 | 14                  | 11                  | 1.701                | 17.997   |
| 01.02.2020  | 15  | 11.02.2020            | 16                  | 105                | 17                  | 13                  | 1.834                | 19.283   |
| 02.02.2020  | 16  | 12.02.2020            | 16                  | 144                | 20                  | 16                  | 1.977                | 20.568   |
| 03.02.2020  | 17  | 13.02.2020            | 16                  | 196                | 25                  | 19                  | 2.130                | 21.853   |
| 04.02.2020  | 18  | 14.02.2020            | 16                  | 267                | 30                  | 23                  | 2.296                | 23.138   |
| 05.02.2020  | 19  | 15.02.2020            | 16                  | 364                | 36                  | 27                  | 2.475                | 24.424   |
| 06.02.2020  | 20  | 16.02.2020            | 16                  | 497                | 43                  | 32                  | 2.668                | 25.709   |
| 07.02.2020  | 21  | 17.02.2020            | 16                  | 678                | 52                  | 38                  | 2.875                | 26.994   |
| 08.02.2020  | 22  | 18.02.2020            | 16                  | 925                | 63                  | 45                  | 3.099                | 28.279   |
| 09.02.2020  | 23  | 19.02.2020            | 16                  | 1.261              | 76                  | 54                  | 3.341                | 29.564   |
| 10.02.2020  | 24  | 20.02.2020            | 16                  | 1.720              | 92                  | 64                  | 3.601                | 30.849   |
| 11.02.2020  | 25  | 21.02.2020            | 16                  | 2.346              | 111                 | 76                  | 3.881                | 32.134   |
| 12.02.2020  | 26  | 22.02.2020            | 16                  | 3.200              | 134                 | 90                  | 4.183                | 33.419   |
| 13.02.2020  | 27  | 23.02.2020            | 16                  | 4.365              | 162                 | 108                 | 4.509                | 34.704   |
| 14.02.2020  | 28  | 24.02.2020            | 16                  | 5.954              | 196                 | 128                 | 4.860                | 35.989   |
| 15.02.2020  | 29  | 25.02.2020            | 17                  | 8.121              | 237                 | 152                 | 5.238                | 37.274   |
| 16.02.2020  | 30  | 26.02.2020            | 27                  | 11.077             | 286                 | 181                 | 5.646                | 38.558   |
| 17.02.2020  | 31  | 27.02.2020            | 46                  | 15.109             | 345                 | 215                 | 6.086                | 39.843   |
| 18.02.2020  | 32  | 28.02.2020            | 48                  | 20.609             | 417                 | 256                 | 6.560                | 41.128   |
| 19.02.2020  | 33  | 29.02.2020            | 79                  | 28.111             | 503                 | 304                 | 7.070                | 42.413   |
| 20.02.2020  | 34  | 01.03.2020            | 130                 | 38.343             | 607                 | 362                 | 7.621                | 43.698   |
| 21.02.2020  | 35  | 02.03.2020            | 159                 | 52.300             | 733                 | 430                 | 8.214                | 44.982   |
| 22.02.2020  | 36  | 03.03.2020            | 196                 | 71.337             | 885                 | 512                 | 8.854                | 46.267   |



| 23.02.2020 | 37 | 04.03.2020 | 262    | 97.304     | 1.069     | 609     | 9.543   | 47.552  |
|------------|----|------------|--------|------------|-----------|---------|---------|---------|
| 24.02.2020 | 38 | 05.03.2020 | 482    | 132.723    | 1.291     | 724     | 10.286  | 48.836  |
| 25.02.2020 | 39 | 06.03.2020 | 670    | 181.034    | 1.559     | 861     | 11.087  | 50.121  |
| 26.02.2020 | 40 | 07.03.2020 | 799    | 246.931    | 1.882     | 1.023   | 11.950  | 51.406  |
| 27.02.2020 | 41 | 08.03.2020 | 1.040  | 336.813    | 2.273     | 1.217   | 12.880  | 52.690  |
| 28.02.2020 | 42 | 09.03.2020 | 1.176  | 459.413    | 2.744     | 1.447   | 13.883  | 53.975  |
| 29.02.2020 | 43 | 10.03.2020 | 1.457  | 626.640    | 3.313     | 1.721   | 14.964  | 55.259  |
| 01.03.2020 | 44 | 11.03.2020 | 1.908  | 854.737    | 4.001     | 2.047   | 16.129  | 56.544  |
| 02.03.2020 | 45 | 12.03.2020 | 2.078  | 1.165.861  | 4.830     | 2.434   | 17.385  | 57.828  |
| 03.03.2020 | 46 | 13.03.2020 | 3.675  | 1.590.234  | 5.832     | 2.895   | 18.738  | 59.113  |
| 04.03.2020 | 47 | 14.03.2020 | 4.585  | 2.169.079  | 7.042     | 3.442   | 20.197  | 60.397  |
| 05.03.2020 | 48 | 15.03.2020 | 5.795  | 2.958.624  | 8.503     | 4.094   | 21.769  | 61.682  |
| 06.03.2020 | 49 | 16.03.2020 | 7.272  | 4.035.563  | 10.267    | 4.868   | 23.464  | 62.966  |
| 07.03.2020 | 50 | 17.03.2020 | 9.257  | 5.504.508  | 12.397    | 5.789   | 25.291  | 64.250  |
| 08.03.2020 | 51 | 18.03.2020 | 12.327 | 7.508.149  | 14.969    | 6.884   | 27.260  | 65.535  |
| 09.03.2020 | 52 | 19.03.2020 | 15.320 | 10.241.115 | 18.074    | 8.187   | 29.383  | 66.819  |
| 10.03.2020 | 53 | 20.03.2020 | 19.848 | 13.968.881 | 21.823    | 9.735   | 31.670  | 68.103  |
| 11.03.2020 | 54 | 21.03.2020 | 22.213 | 19.053.554 | 26.350    | 11.577  | 34.136  | 69.387  |
| 12.03.2020 | 55 | 22.03.2020 | 24.873 | 25.989.048 | 31.816    | 13.768  | 36.794  | 70.671  |
| 13.03.2020 | 56 | 23.03.2020 | 29.056 | 35.449.061 | 38.416    | 16.372  | 39.658  | 71.956  |
| 14.03.2020 | 57 | 24.03.2020 | 32.986 | 48.352.519 | 46.385    | 19.470  | 42.746  | 73.240  |
| 15.03.2020 | 58 | 25.03.2020 | 37.323 | 65.952.837 | 56.007    | 23.154  | 46.074  | 74.524  |
| 16.03.2020 | 59 | 26.03.2020 | 43.938 | 83.020.000 | 67.626    | 27.534  | 49.661  | 75.808  |
| 17.03.2020 | 60 | 27.03.2020 | 50.871 | 83.020.000 | 81.654    | 32.743  | 53.528  | 77.092  |
| 18.03.2020 | 61 | 28.03.2020 | 57.695 | 83.020.000 | 98.592    | 38.938  | 57.695  | 78.376  |
| 19.03.2020 | 62 | 29.03.2020 | 62.095 | 83.020.000 | 119.045   | 46.305  | 62.187  | 79.660  |
| 20.03.2020 | 63 | 30.03.2020 | 66.885 | 83.020.000 | 143.740   | 55.065  | 67.029  | 80.944  |
| 21.03.2020 | 64 | 31.03.2020 | 71.808 | 83.020.000 | 173.557   | 65.483  | 72.247  | 82.228  |
| 22.03.2020 | 65 | 01.04.2020 | 77.872 | 83.020.000 | 209.560   | 77.872  | 77.872  | 83.512  |
| 23.03.2020 | 66 | 02.04.2020 | 84.794 | 83.020.000 | 253.032   | 92.605  | 83.935  | 84.796  |
| 24.03.2020 | 67 | 03.04.2020 |        | 83.020.000 | 305.521   | 110.125 | 90.470  | 86.080  |
| 25.03.2020 | 68 | 04.04.2020 |        | 83.020.000 | 368.899   | 130.960 | 97.513  | 87.364  |
| 26.03.2020 | 69 | 05.04.2020 |        | 83.020.000 | 445.424   | 155.736 | 105.105 | 88.648  |
| 27.03.2020 | 70 | 06.04.2020 |        | 83.020.000 | 537.824   | 185.200 | 113.288 | 89.931  |
| 28.03.2020 | 71 | 07.04.2020 |        | 83.020.000 | 649.391   | 220.239 | 122.109 | 91.215  |
| 29.03.2020 | 72 | 08.04.2020 |        | 83.020.000 | 784.102   | 261.906 | 131.615 | 92.499  |
| 30.03.2020 | 73 | 09.04.2020 |        | 83.020.000 | 946.758   | 311.457 | 141.863 | 93.783  |
| 31.03.2020 | 74 | 10.04.2020 |        | 83.020.000 | 1.143.156 | 370.382 | 152.907 | 95.066  |
| 01.04.2020 | 75 | 11.04.2020 |        | 83.020.000 | 1.380.294 | 440.455 | 164.812 | 96.350  |
| 02.04.2020 | 76 | 12.04.2020 |        | 83.020.000 | 1.666.625 | 523.786 | 177.644 | 97.634  |
| 03.04.2020 | 77 | 13.04.2020 |        | 83.020.000 | 2.012.353 | 622.882 | 191.474 | 98.917  |
| 04.04.2020 | 78 | 14.04.2020 |        | 83.020.000 | 2.429.800 | 740.726 | 206.382 | 100.201 |
|            |    |            |        |            |           |         |         |         |



| 05.04.2020 | 79 | 15.04.2020 | 83.020.000 | 2.933.842  | 880.866    | 222.450 | 101.484 |
|------------|----|------------|------------|------------|------------|---------|---------|
| 06.04.2020 | 80 | 16.04.2020 | 83.020.000 | 3.542.444  | 1.047.518  | 239.769 | 102.768 |
| 07.04.2020 | 81 | 17.04.2020 | 83.020.000 | 4.277.296  | 1.245.701  | 258.437 | 104.051 |
| 08.04.2020 | 82 | 18.04.2020 | 83.020.000 | 5.164.587  | 1.481.377  | 278.557 | 105.335 |
| 09.04.2020 | 83 | 19.04.2020 | 83.020.000 | 6.235.940  | 1.761.642  | 300.245 | 106.618 |
| 10.04.2020 | 84 | 20.04.2020 | 83.020.000 | 7.529.536  | 2.094.931  | 323.621 | 107.902 |
| 11.04.2020 | 85 | 21.04.2020 | 83.020.000 | 9.091.478  | 2.491.275  | 348.817 | 109.185 |
| 12.04.2020 | 86 | 22.04.2020 | 83.020.000 | 10.977.433 | 2.962.605  | 375.974 | 110.469 |
| 13.04.2020 | 87 | 23.04.2020 | 83.020.000 | 13.254.613 | 3.523.107  | 405.246 | 111.752 |
| 14.04.2020 | 88 | 24.04.2020 | 83.020.000 | 16.004.177 | 4.189.651  | 436.797 | 113.035 |
| 15.04.2020 | 89 | 25.04.2020 | 83.020.000 | 19.324.116 | 4.982.299  | 470.804 | 114.319 |
| 16.04.2020 | 90 | 26.04.2020 | 83.020.000 | 23.332.750 | 5.924.911  | 507.459 | 115.602 |
| 17.04.2020 | 91 | 27.04.2020 | 83.020.000 | 28.172.943 | 7.045.858  | 546.968 | 116.885 |
| 18.04.2020 | 92 | 28.04.2020 | 83.020.000 | 34.017.196 | 8.378.878  | 589.553 | 118.168 |
| 19.04.2020 | 93 | 29.04.2020 | 83.020.000 | 41.073.792 | 9.964.096  | 635.453 | 119.452 |
| 20.04.2020 | 94 | 30.04.2020 | 83.020.000 | 49.594.222 | 11.849.225 | 684.927 | 120.735 |